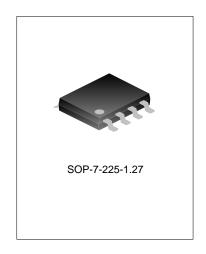


NON-ISOLATED BUCK LED LIGHTING DRIVE IC WITH LOW POWER AND HIGH CONSTANT CURRENT ACCURACY


DESCRIPTION

SD670XSC is designed for non-isolated LED driving with Buck structure, high constant current accuracy and high linear/load regulation available with assistant of special sense technology.

SD670XSC integrates various protections, such as output open/short circuit protection, cycle-by-cycle current limit protection and over temperature protection.

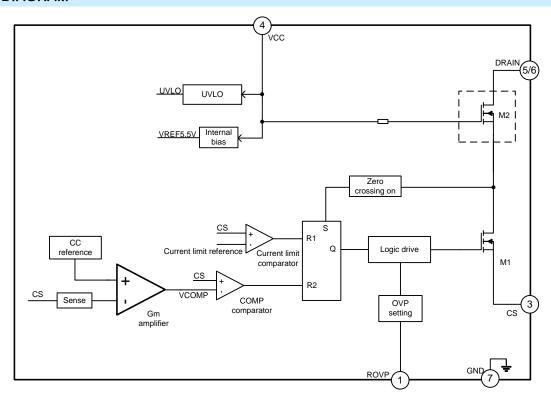
The start-up current and operating current are low and highlight LED can be driven with high efficiency in full range (85VAC~265VAC).

SD670XSC integrates high voltage power MOSFET, reducing the system cost and the whole volume.

FEATURES

- Built-in 500V high voltage power MOSFET
- Constant current with high accuracy for LED (<±3%)
- Output open/short circuit protection
- CS open/short circuit protection
- VCC undervoltage protection
- Over temperature protection
- Cycle-by-cycle current protection
- No auxiliary winding

APPLICATION


- **Bulb Lamp**
- T5/T8 LED Lamp
- Various LED Lighting

ORDERING INFORMATION

Part No.	Package	Material	Packing	
SD6701ASC	SOP-7-225-1.27	Halogen free	Tube	
SD6701SC	SOP-7-225-1.27	Halogen free	Tube	
SD6702SC	SOP-7-225-1.27	Halogen free	Tube	
SD6701ASCTR	SOP-7-225-1.27	Halogen free	Tape&Reel	
SD6701SCTR	SOP-7-225-1.27	Halogen free	Tape&Reel	
SD6702SCTR	SOP-7-225-1.27	Halogen free	Tape&Reel	

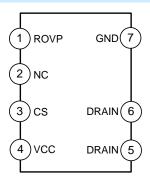
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristi	cs	Symbol	Rating	Unit	
Drain-Gate voltage (R _{GS} =1MW)		V_{DGR}	500	V	
Gate-Source Voltage		V_{GS}	±30	V	
	SD6701ASC		2.4		
Drain current pulse	SD6701SC	I_{DM}	4	Α	
	SD6702SC		8		
Danie andiana and	SD6701ASC		0.8		
Drain continuous current	SD6701SC	I_D	1	Α	
(Tamb=25°C)	SD6702SC		2		
Supply voltage		Vcc	-0.3~17	V	
ROVP voltage		V_{ROVP}	-0.3~6.5	V	
Sense voltage		Vcs	-0.3~6.5	V	
DRAIN voltage		V_{DRAIN}	-0.3~500	V	
Junction temperature Range		T_j	-40~150	°C	
Storage temperature Range		Ts	-55~150	°C	

Rev.:1.2

http://www.silan.com.cn


ELECTRICAL CHARACTERISTICS (Unless otherwise stated, V_{CC}=12V,T_{amb}=25°C)

Characteristics		Symbol	Test condition	Min.	Тур.	Max.	Unit
VCC clamp voltage		VCC _{CLAMP}	I _{VCC} >2mA	14	16	17	V
UVLO VH		UVLO _H		10.5	12	13.5	V
UVLO VL		UVLO _L		6.5	7.5	8.5	V
Start-up current		I _{START}	V _{CC} =10V	50	95	125	μΑ
Operating current		Ivcc	CS=1V	100	150	200	μΑ
Protection current		I _{PRO}	CS=5V	800	1200	2000	μΑ
CC parameters		ı		1		1	
CS reference voltage		CS _{REF}		388	400	412	mV
CS current limit reference v	oltage	CS _{PEAK}		420	450	480	mV
Time Parameters							
Max. on time		T _{ON,MAX}		40	50	60	μs
LEB		T _{LEB}		0.45	0.6	0.75	μs
Max. off time		T _{OFF,MAX}		180	220	260	μs
Min. off time		T _{OFF,MIN}		2	3	4	μs
Min. period		T _{MIN}		3.7	5	6.3	μs
Internal OVP control		T _{OVP}		3.6	4.5	5.4	μs
ROVP voltage		V_{ROVP}		2	2.4	2.8	V
Internal high voltage MOS	SFET	T	T	T			
	SD6701ASC		V _{GS} =12V,I _D =0.1A		13	14.5	Ω
On resistance	SD6701SC	R _{DSON}			7.5	8.6	
	SD6702SC				5	5.7	
	SD6701ASC	BV _{DSS}	V _{GS} =0V,I _D =50uA	500	550		V
withstand voltage at Drain	SD6701SC			500	550		
	SD6702SC			500	550		
Zero gate voltage drain	SD6701ASC	I _{DSS}	V _{DS} =500V, V _{GS} =0V			1.0	μА
	SD6701SC					1.0	
current	SD6702SC					1.0	
Gate-Source Leakage Current	SD6701ASC	I _{GSS}	V _{GS} =±30V, V _{DS} =0V			±100	nA
	SD6701SC					±100	
	SD6702SC					±100	
Temperature characteris	tics	ı	1	T		1	
Regulatory temperature threshold value		T _{REG}		125	140	155	°C
Over temperature protection threshold value		T _{SD}		135	150	165	°C
Over temperature protection release point		T _{RECOVERY}		115	130	145	°C

Rev.:1.2 http://www.silan.com.cn

PIN CONFIGURATIONS

PIN DESCRIPTION

Pin No.	Pin Name	I/O	Description	
1	ROVP	I/O	OVP pin, short-circuited or connected to GND through a resistor	
2	NC		No connection	
3	CS	I	Sense current pin	
4	VCC	POWER	Power supply	
5, 6	DRAIN	0	Drain of internal high voltage MOSFET	
7	GND	GND	GND	

FUNCTION DESCRIPTION

SD670XSC is a non-isolated LED driver IC adopting BUCK structure with internal high voltage power MOSFET. The function is described below.

Start control

For SD670XSC, no auxiliary winding is needed. The bus voltage charges capacitor of VCC through start resistor. The operating current should be as low as possible for high conversion efficiency. It features undervoltage protection at VCC and the on/off threshold value are 12V and 7.5V. The hysteresis characteristic guarantees that the IC can be powered by the capacitor during the start.

Constant current accuracy control

IC senses the MOSFET current, which is input to Gm amplifier together with internal reference voltage for error amplification, to obtain high constant current accuracy and high linear/load regulation rate.

CS voltage and 400mV reference voltage are the inputs of Gm amplifier, and then the output is integrated through internal COMP capacitor.

Output current is given by:

 I_{OUT} =400mV/2* R_{CS} .

Boundary-conduction mode

SD670XSC works in boundary-conduction mode with strong anti-interference and high conversion efficiency. Auxiliary winding is unnecessary to detect zero-crossing current and the peripheral circuit is simple. Due to the boundary-conduction mode, part of harmonic oscillation energy generated by external switch is transferred to VCC.

Current detection and LEB

With the cycle-by-cycle current limit function, internal switch M1 will be turned off if CS voltage exceeds 0.45V. System still works and internal switch M1 is turned on in the next period. There is no LEB for current limit comparator.

CS voltage and COMP voltage are compared by COMP comparator, if CS voltage is higher than COMP, internal switch M1 is off and system keeps work. During the instant of turning on internal switch M1, 0.6µs LEB is used for avoiding the error operation on internal switch M1.

CS open/short circuit protection

If CS is open, open circuit protection actives and the IC stops; if CS resistor is shorted, there is no limit for inductor current, voltage on pin CS is zero, and the short-circuit status is judged by checking drain voltage during on of internal OUT signal. If short-circuit protection actives, output is shutdown, VCC decreases and IC restarts.

Source driver

Source drive is adopted for this IC. Gate of M2 is connected to VCC through a resistor, Source is connected to Drain of internal switch M1. When Gate of internal switch M1 is driven by IC, the IC current can be reduced because of the low gate capacitance of M1, and hence no auxiliary winding is needed.

Output short/open circuit protection

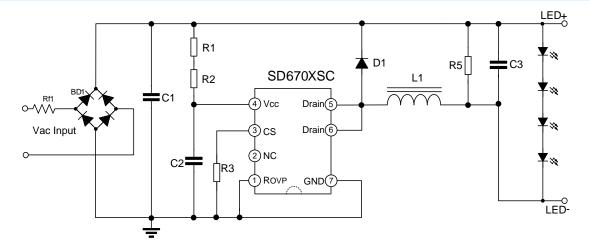
There is no signal which reflects the output, the IC detects the discharge time for judging over voltage. The over voltage protection threshold value is set through pin ROVP. Please refer to application note for details.

There is no signal which reflects the output, the IC detects the discharge time for judging over voltage.

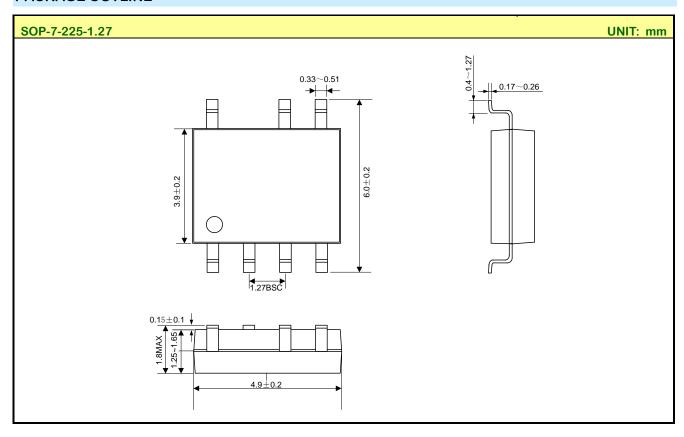
When ROVP is connected to GND via resistor, the over voltage protection threshold value is set through resistance adjustment;

when ROVP is shorted connected to GND, the over voltage protection threshold is set by the IC. Internal Tovp is set as 4.5 us, the over voltage protection actives if Toff<Tovp, please refer to application note for details. It is recommended to connect ROVP to GND.

Internal temperature regulatory


The output current will be reduced if the IC temperature exceeds the certain value.

Rev.:1.2


http://www.silan.com.cn

TYPICAL APPLICATION CIRCUIT

PACKAGE OUTLINE

MOS DEVICES OPERATE NOTES:

Electrostatic charges may exist in many things. Please take following preventive measures to prevent effectively the MOS electric circuit as a result of the damage which is caused by discharge:

- The operator must put on wrist strap which should be earthed to against electrostatic.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed in antistatic/conductive containers for transportation.

Disclaimer:

- Silan reserves the right to make changes to the information herein for the improvement of the design and performance without prior notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Silan products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products could cause loss of body injury or damage to property.
- Silan will supply the best possible product for customers!

SD670XSC_Datasheet

SD670XSC Part No.: Document Type: Datasheet HANGZHOU SILAN MICROELECTRONICS CO.,LTD Copyright: Website: http://www.silan.com.cn Author: Zhu Xiaojie Rev.: 1.2 Revision History: Modify the ordering information Modify the package outline 2. Rev.: Zhu Xiaojie Author: Revision History: 1. Modify the absolute maximum ratings, V_{DGR} 2. Modify the electrical characteristics, $T_{\mbox{\scriptsize OVP}}$ 3. Modify the function description Modify the typical application circuit 4. Rev.: 1.0 Author: Zhu Xiaojie Revision History: First release

http://www.silan.com.cn Page 8 of 8